Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Dairy Sci ; 77(10): 3236-51, 1994 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-7836610

RESUMEN

When improvement is desired for several traits that may differ in variability, heritability, economic importance, and in the correlation among their phenotypes and genotypes, simultaneous multiple-trait index selection was more effective than independent culling levels or sequential selection. Such comparisons required definition of aggregate breeding value determined jointly by breeding values and economic importance of the component traits. The economic weight should approximate the partial regression of cost per unit of enterprise output value on breeding value for each trait. These can vary with production and marketing system, with performance of traits, and with breed role (i.e., paternal, maternal, or general) in crossbreeding systems. Genetic gains desired to maintain competitive ranking also may define the relative importance of traits. Because information available to estimate breeding values varies among the ages and categories of individuals under selection and because means are unknown, regressed (BLUP) predictions of trait breeding values are useful. They allow appropriate economic weights to be applied as the last step for predicting aggregate breeding values for individuals of different age classes, and they simplify choosing the proportions of selected breeders from each age class that maximize rate of change in aggregate breeding values. Inappropriate economic weights or errors in the parameters used to predict trait breeding values overestimate realized response in true aggregate breeding value.


Asunto(s)
Crianza de Animales Domésticos/tendencias , Animales Domésticos/genética , Cruzamiento/métodos , Crianza de Animales Domésticos/economía , Crianza de Animales Domésticos/métodos , Animales , Bovinos , Femenino , Masculino , Aves de Corral/genética , Reproducción/genética , Rumiantes/genética , Porcinos/genética
8.
Theor Appl Genet ; 38(6): 256-63, 1968 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24442311

RESUMEN

In an attempt to analyse long-term response in finite dioecious populations, selection processes are simulated on a computer with situations of parental population size, linkages between loci, selection intensity, and heritability, specified in a 3(4) factorial design. A diploid polygenic system of 40 loci on 4 chromosomes is considered for additive genes. Linkage levels are specified as free recombinations, adjacent loci 5 map units apart, and as clusters on chromosomes with a distance of only .5 units between adjacent loci. Parental populations of 8, 16, and 64, truncation selection of 1/2, 1/4, and 1/8 of the progeny each generation, and initial heritability of 1, 1/3, and 1/9 are simulated for various populations.For these populations, which are initially samples from a theoreticalHARDY-WEINBERG situation, it is shown that an initial linear phase of response, which may last for only 2 or 3 generations in some cases, depends on the intensity of selection alone. The effects and interactions of all the above factors on the curvilinearity of response in later generations are analysed. It appears that linkages between loci have a strong influence in reducing the rate of response and the total response. In the extreme cases of gene clusters in a parental population size of 8 with low heritability, truncation selection is relatively almost completely ineffective in causing change in the mean over generations. The effect of tight linkage is also exhibited in causing more reduction in genotypic variance than can be accounted for by corresponding response.The depressing effect of finiteness of population size on the rate of response and the total response appears to increase in geometric proportion with linkages between loci. The number of generations to fixation appears to be reduced in a similar manner. A strong interaction between population size and linkage is thereby found in various analyses. With parental populations as large as 64, linkage effects on response are negligible when recombinations between adjacent loci are .05 or more. In such situations there is a slower rate of response in later generations with linkage but the total response attained and the rate of fixation of inferior genes is about the same as for free recombinations. Increase in the intensity of selection appears to augment the effects of linkage in reducing the rate of response in later generations. This type of interaction is attributed to the accumulation of gametic disequilibria due to selection which are retained in the population over generations with linkage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...